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We show that  in a thin l aye r  of a liquid, for  which the influence of i t s  boundar ies  is  substant ial ,  
the propaga t ion  of weakly at tenuat ing thermoconvec t ive  waves  i s  poss ib le  close to and beyond 
the s tabi l i ty  threshold.  We obtain the c h a r a c t e r i s t i c s  of weakly at tenuating ha rmonics .  

In a p rev ious  p a p e r  [1] i t  was shown that  in a hor izonta l  l aye r  of a t he rma l ly  compres s ib l e  liquid, 
with a t e m p e r a t u r e  gradient  p a r a l l e l  to the grav ia t iona l  force  (we a s sume  that  the liquid expands when 
heated,  i . e . ,  that 8p /aT  < 0; in the c o n t r a r y  case ,  we se lec t  the opposite d i rec t ion  fo r  the t e m p e r a t u r e  
gradient) ,  the propaga t ion  of weakly at tenuating thermoeonvec t ive  waves  i s  poss ib le .  The authors  have 
studied the propagat ion  of smal l  one-d imens iona l  pe r tu rba t ions  of the t e m p e r a t u r e ,  veloci ty ,  and p r e s s u r e  
under  the assumpt ion  that  the hor izonta l  boundar ies  alone stipulate the mechan ica l  equi l ibr ium of the l ayer  
and in no way af fec t  the p ropaga t ion  of the waves,  i . e . ,  that the condition X/h<< 1 is  sat isf ied,  where X is  
the wave length of the waves  in quest ion and h i s  the l aye r  th ickness .  Such an assumpt ion  can apparen t ly  
be made only fo r  a thick layer .  We have not excluded the poss ib i l i ty  that, in pr inciple ,  i t  is  not rea l izab le .  
At l ea s t  in thin l aye r s  a subs tant ia l  influence of the boundar ies  on the c h a r a c t e r i s t i c s  of the waves  should 
be expected.  

I t  i s  poss ib le  to have weakly at tenuat ing thermoeonvec t ive  waves  propaga t ing  in a thin l aye r  of a 
l iquid? In o r d e r  to answer  this quest ion we need to study the propagat ion  of thermoconvec t ive  waves  with 
the influence of the boundar ies  taken into account.  

We cons ider  a hor izonta l  semtinf ini te  l aye r  of a liquid, bounded above and below by two p lanes  between 
which a constant  t e m p e r a t u r e  di f ference is  maintained.  We a s sume  that 3 p / O T  < 0, and that the t e m p e r a -  

t a re  gradient  3~ is  Pa ra l l e l  to the grav i ta t iona l  force  g. On a ve r t i ca l  wall  bounding the liquid f r o m  the side 
we have a source  of per iod ic  pe r tu rba t ions  of the t e m p e r a t u r e ,  veloci ty ,  and p r e s s u r e ,  the nature  of which 
we do not spec i fy  here.  The per~nrbat ions p ropaga te  along the l ayer  in the f o r m  of thermoconvect ive  waves,  
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Fig. 1 Fig. 2 
Fig. 1. Attenuation d e c r e m e n t  v e r s u s  Rayle igh  number  (Pr  = 1): Curves  1, 2, 3, and 
4 a r e  for  r equal  to 3, 1, 0.1, and 0.01, r e spec t ive ly .  

Fig. 2. Group ve loc i ty  v e r s u s  Rayle igh  number  (Pr  = 1): Curves  1, 2, 3, and 4 a re  
fo r  w equal  to 3, 1, 0.1, and 0.01, r e spec t ive ly .  

Inst i tute of Heat and Mass  T rans fe r ,  Academy  of Sc iences  of the Be lo ra s s i an  SSR, iVIiask. Trans la ted  
f r o m  Inzhenerno-F iz i chesk i i  Zhurnal ,  Vol. 26, No. 1, pp. 104-111, January ,  1974. Original  a r t i c le  sub-  
mi t ted  D e c e m b e r  11, 1972. 

�9 1975 Plenum Publishing Corporation, 227 West 17th Street, New York. N.Y. 10011. No part o f  this publication may be reproduced, 
~tored in a retrieval system, or transmitted, in any .form or by any means; electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

80 



~o 

I 
I 

i 

i 

I 
i I 

L 
500 6 0 0  Refit 700 Ra 

Fig. 3. Wave length v e r s u s  Rayle igh 
number  (Pr  = 1): Curves  1, 2, 3, and 
4 a r e  for  w equal  to 3, 1, 0,1, and 0.01, 
r e spec t ive ly .  

the c h a r a c t e r i s t i c s  of which a r e  de te rmined  by the quantity y, the th ickness  h, the p r o p e r t i e s  of the liquid, 
and the boundary  conditions.  It  i s  known that in the case  y = 0 (the liquid i s  i so the rmal )  the t h e r m o e o n v e c -  
rive waves  a re  s t rongly  damped,  the logar i thmic  damping d e c r e m e n t  5 > 2% which c o r r e s p o n d s  to an exp 
(27r)-fold damping p e r  wave length. 

We invest igate  how the c h a r a c t e r i s t i c s  of the thermoconvec t ive  waves  v a r y  with an inc rease  in the 
value of the t e m p e r a t u r e  grad ien t  y. I t  should be expected  that  for  a given l aye r  there  is  a c r i t i ca l  value 
Ycrit fo r  which there  occu r s  a p r inc ipa l  change in the nature  of the thermoconvec t ive  waves ,  i f  only because  
of the fac t  that there is  a c r i t i ca l  value Tc beyond which even the mechanica l  equi l ib r ium of the l aye r  is  un- 
stable [2]. Thus there  is  a s tabi l i ty  threshold  of the rmocoavec t ive  waves ,  which is  de te rmined  by both the 
p r o p e r t i e s  of the l aye r  and the c h a r a c t e r  of the per iod ic  pe r tu rba t i ons  on the boundary  (the ampli tude,  the 
f requency,  the shape). I t  i s  n e c e s s a r y  to take into account  the fac t  that  beyond the s tabi l i ty  threshold 
the ampli tude of flows in the l aye r  i s  not de te rmined  only by the ampli tude of the pe r tu rba t ions  on the side 
wall. 

To answer  the quest ion concerning the poss ib i l i ty  of the propaga t ion  of weakly at tenuating waves  in 
the l ayer ,  we inves t iga te  waves  up to and beyond the s tabi l i ty  threshold.  We fo rmula te  the p r o b l e m  m a t h e -  
mat ica l ly .  We choose a c a r t e s i a n  s y s t e m  of coordinates .  The x axis  is  d i rec ted  along the l aye r ,  the y axis  
no rma l  to it. Our s ta r t ing  point  i s  f r o m  the well  known equations of na tura l  convect ion in the Bouss inesq  
approx imat ion  [2]. We cons ider  only waves  of smal l  ampli tude.  This enables  us to neglec t  the convective 
t e r m s  in the equations;  f u r t h e r m o r e ,  we can expec t  that the s tabi l i ty  threshold  of the rmoconvec t ive  waves  
of sma l l  ampli tude will be close to the s tabi l i ty  threshold  of the l aye r ,  a f ac t  which is  well  known. By 
vir tue  of the fac t  that  in an a b o v e - c r i t i c a l  region the ampli tude of the convection a r i s ing  is  p ropor t iona l  to 
(ARa/Ra)  1/2, we can a s s u m e  that l inear  equat ions will give a good descr ip t ion  of the p r o c e s s ,  even in a 
neighborhood beyond the s tab i l i ty  threshold  of the waves [3]. Consequently,  fo r  the study of t he rmocon-  
vect ive  waves  in the l aye r  of liquid i t  is  n e c e s s a r y  to solve the following d imens ion less  s y s t e m  of l inea r  
equations:  

Ou Os 
O--t = - -  Ox -i- Au, 

Ov Op 
- -  hv -~- GrO, 

at ay 

a u +. av = o, 

ax Oy 

O0 1 
- - A O +  v. 

Ot Pr 

(1) 

Here ,  u and v a r e  the ve loc i ty  components  in the d i rec t ion  of the x and y axes ,  r e spec t ive ly ;  T = 1- -y  
+ 0 is  the t e m p e r a t u r e ;  p is  the p r e s s u r e ;  G r  = f lh4y/u 2 i s  the Grashof  number ;  and P r  = v / a  i s  the Prand t l  
number .  

The boundary  conditions on the side wall  a r e  

(2) x = O; 0 = 0 o sin .~y exp (/cot); v = v 0 sin ny exp (icot). 

Horizonta l  boundar ies ;  we cons ide r  three  v e r s i o n s  here :  

a) two solid p lanes ;  
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b) one solid plane and one f r ee  sur face ;  

c) two f r ee  su r faces .  

The l a s t  case  is  c h a r a c t e r i z e d  by the s impl ic i ty  of the f o r m u l a s  and is  cons idered  in the p r e s e n t  
paper .  F o r  this case  we have 

y = O ,  1; 0 = 0 ;  v = O ;  Ou/Oy O.  (3) 
. �9 . .  : 

We seek  a solution of the equat ions (1)-(3) in the f o r m  

(u~ p) = (U, /7) cos ~y exp[i (~ot - -  kx)l, 
. (4) 
(v, 0) = (V, 0) sin ~y exp [i (~ot - -  kx)]. 

Here  U ,  V, If, | a re  constants ;  k = k I + ik 2 i s  a wave vec to r .  Af ter  subst i tut ing the equations (4) into the 
equat ions (1), we obtain the following equation defining the re la t ionship  between the wave vec to r  k and the 
f requency  w: 

[ir -i- ( k2 -i- n'-')/Pr] (io) -I- k2 ~i- us) ( ks -i-- 3s) -- k s Gr. (5) 

The damping dec remen t ,  as  i s  well  known, may  be e x p r e s s e d  in t e r m s  of the components  of the wave 
vec to r  as  follows: 5 = 2~k2/kl, and, as  can be seen f r o m  equation (5), i t  depends on the f requency,  the 
P rand t l  number ,  a~d the Grashof  number .  To answer  the question as  to whether  we can have propagat ion  
of waves  with weak damping,  and, ff so, fo r  what p a r a m e t e r  va lues ,  we need to solve equation (5) for  k. 
Equation (5) has  6 roo ts ,  three  of wMch can be r e j ec t ed  because  of the condition k 2 < 0. F r o m  the roo ts  
which r e m a i n  we mus t  se l ec t  the one to which the min imum damping d e c r e m e n t  co r responds .  The ent i re  
p rocedure  of solving equation (5) and se lec t ing an appropr ia te  k was c a r r i e d  out on an e lec t ron ic  digital 
computer .  

F igure  1 shows how the at tenuation d e c r e m e n t  6 depends on the Rayle igh  number  Ra  fo r  va r ious  values  
of We The point  Ra = R c r i t  c o r r e s p o n d s  to the threshold  of s tabi l i ty  of the mechan ica l  equi l ib r ium of the 
l aye r  with f r ee  boundar ies .  Under  our  assumpt ions  the Rayle igh  number  Ra,  cor responding  to the s tabi l i ty  
threshold  of thermoconvec t ive  waves  genera ted  by per iod ic  pe r tu rba t ions  on the side wall,  d i f fers  little 

f r o m  Rcr i t .  

An ana lys i s  of the g r aphs  shows that with an inc rease  in the Rayle igh number  Ra,  the at tenuation 
d e c r e m e n t  d e c r e a s e s  for  all  f requenc ies ,  i . e . ,  the p r e s e n c e  of a negative t e m p e r a t u r e  gradient  a c r o s s  the 
l aye r  leads to a weakening of the damping of the thermoconvec t ive  waves.  However,  the f o r m  of this de-  
pendence d i f fe rs  subs tant ia l ly  fo r  the va r ious  f requenc ies  close to the c r i t i ca l  number  Rcr i t .  Fo r  suffi-  
c ient ly  la rge  ~ (Curves 1, 2) there  is  no e s s e n t i a l c h a n g e  in the at tenuation d e c r e m e n t  as  Ra  i n c r e a s e s ,  
even when pas s ing  through the s tabi l i ty  threshold.  The p ic ture  is  comple te ly  di f ferent  in the case  of sma l l  
w (Curves 3, 4). With an i nc rea se  in Ra  the attenuation d e c r e m e n t  v a r i e s  up to the s tabi l i ty  threshold as  �9 
fo r  la rge  w, but c lose to Ra  = R c r i t  i t  d e c r e a s e s  substant ia l ly .  Harmon ics  appea r  cor responding  to the 
weak damping of the thermoconvec t ive  waves  (Curve 4). The region of weak damping is  de te rmined  by 
Rayle igh  number s  l a r g e r  than some c r i t i ca l  value R c r i t  and by sufficiently smal l  value of w. F o r  weakly 
damped  waves  the propagat ion  speed of pe r tu rba t ions  i n c r e a s e s  sharp ly  (Fig. 2). The wave lengths,  as  
can be seen f r o m  Fig. 3, v a r y  between the l imi t s  of 2h and 3h. This  indicates  that  the boundar ies  have a 
subs tant ia l  influence on the propagat ion  of the rmoconvec t ive  waves.  

We m a y  thus conclude that in a thin l aye r  of a liquid the propagat ion  of weakly at tenuating t h e r m o -  
convect ive waves  is  poss ib le  in the p r e s e n c e  of a t e m p e r a t u r e  gradient  pa ra l l e l  to the gravi ta t ional  force ,  
but only close to and beyond the s tabi l i ty  threshold.  

We give numer i ca l  e s t i m a t e s  for  a l aye r  of a i r  of c en t ime te r  thickness:  h = 10 -2 m,  v = 15 .10  -6 
m2/sec ,  a = 27. I0  -6 m2/sec .  Weak attenuation,  can be seen f r o m  Fig. 1 (6 - 10-2), is  poss ib le  for  w = 102, 
Ra  = 700. In t e r m s  of d imensional  quanti t ies  this co r r e sponds  to a f requency  of w = 10 -3 Hz and T = 300~/m. 
Under  these conditions a pe r tu rba t ion  a t tenuates  2.73-fold over  100 wave lengths,  L e . ,  in two m e t e r s .  We 
note that  in the absence  of a ve r t i c a l  t empe ra tu r e  grad ien t  a pe r tu rba t ion  in such a l aye r  is  a t tenuated by as  
much as  half the height of the l ayer ,  i . e . ,  by approx ima te ly  5- 10 -3 m. 

The weak attenuation beyond the s tabi l i ty  threshold  can be explained if we take into account  the fac t  
that  a f t e r  the breakdown of mechanica l  equi l ibr ium a per iodic  convective s t ruc tu re  develops.  Fo r  the case  
in which the pe r tu rba t ions  on the side wall  a re ,  in some sense ,  c o m m e n s u r a t e  with the per iod  and the in -  
tens i ty  of this convection, we can expec t  them to be weakly attenuated. 
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Fig. 4. Attenuation decrement .  
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Fig. 5. Wave length. 

Having shown that in a layer  of liquid, heated f rom below, weak attenuation of thermoconvective 
waves is possible close to and beyond the stabil i ty threshold,  we find it  of in te res t  to study the behavior of 
such waves in v iscoelas t ic  media under the same conditions. It  is  a known fact  (see [4]) that in a layer  of 
v iscoelas t ic  liquid, heated f r o m  below, two kinds of instabil i ty are  possible:  monotonic and osci l la tory.  
It  should therefore  be expected that in such liquids the p roce s s  of thermoconvective wave propagation would 
be a r i che r  one. 

To elucidate the fundamental fea tures  of the propagation of thermoconvective waves in viscoelas t ic  
media, we use the Maxwell model of a v iscoelas t ic  liquid, the rheological  equation for  which, taking in- 
compress ib i l i ty  into account, has the fo rm 

O%j ( O r , , )  avi ) 
T, ' n - -  �9 (6) 

at : c~hJ-~ ax) ': -Ox k 

Here the eki are  the components of the viscous s t r e s s  tensor;  r r is  the charac te r i s t i c  relaxation time; 
and v i are  the veloci ty  components.  

Thus, just  as we did above, we l imit  ourse lves  to the considerat ion of waves of small  amplitude in a 
layer  with free boundaries.  

The dimensionless  equations for  a v iscoelas t ic  medium can be written in the Boussinesq approximation 
in the fo rm 

Ou Op 
Ot Ox 

av_L = _  a~ + 
at ay  

@ c3(rn , Off12 
3X Oy 

Oq ~ 2 On,,,, -" +GrO,  
Ox Og 

O~n Ott Ou Ov 
"r @011= 2 - - ,  - -  @ ~y-- = O, 

Ot Ox Ox Og 

au av ao 1 
O a l g  -~- G'12 - -  ]- - -  , - -  - -  n O  @~ U, �9 
Ot Og Ox at Pr 

0o2~ Ov "~-- -" -~ %2 = 2 - -  
Ot Og 

(7) 

The boundary conditions remain  as before,  namely,  the conditions (2) and (3). The convective motion 
in the layer  of the v iscoelas t ic  Liquid is  determined by four dimensionless  pa r ame te r s :  Gr, T, P r ,  w. The 
p a r a m e t e r  r cha rac te r i zes  the e las t ic  p roper t i e s  of the medium. When ~- = 0, the sys tem (7) descr ibes  an 
o rd inary  Newtonian liquid. 

As before,  we seek a solution of the equations (7), (2), and (3) in the f o r m  

(u, p, (~11, ( 5 2 ~  ( U ,  H ,  Z l l  , Z22 ) c o s  ngexp [i (ot--kx)] ,  
(s) 

(v, O, (hs) = (V, O, E12) sinugexp[i (cot--kx)], 
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Fig. 6. Group veloci ty.  

F o r  w and k we obtain the d i spe r s ion  equation 
io (ior @ 1) (k 2 + ~-~) [ira 4- ( k* _u n2)/Prl 

. . . .  (9) 
+ (k ~ + u~) ~ [ir + (k ~ + u~)/Prl -- k 2 Gr (/(or + 1). 

This  equat ion is  va l id  in a region of Rayle igh  number s  not ex -  
ceeding a threshold  value for  which ins tabi l i ty  commences .  This  is  
connected with the fac t  that  in the region beyond the threshold  the 
ampli tude of the convect ive motion in the l a y e r  is  no longer d e t e r -  
mined by the ampli tude of pe r tu rba t ions  on the side wall. A de-  
tai led study of o sc i l l a to ry  and monotonic ins tabi l i ty  in a l aye r  of a 
v i scoe las t i c  liquid was given in [4]. We m e r e l y  note here  that  for  an 
i nc rea se  in the Rayle igh  number  as  a function of r three  poss ib i l i t i e s  
a r i s e :  the monotonic ins tabi l i ty  threshold m a y  be below, m a y  coin-  

cide with, o r  i t  m a y  be above the osc i l l a to ry  ins tabi l i ty  threshold.  Fo r  the case  in which r --* 0, i . e . ,  when 
the liquid is  weakly e las t ic ,  the f i r s t  of these poss ib i l i t i e s  obtains.  When r i s  suff icient ly la rge ,  the c r i s i s  

�9 of ins tab i l i ty  i s  a s soc ia ted  with osc i l l a to ry  per tu rba t ions .  We can expect  that  in a l aye r  of a v i scoe las t i c  
liquid, with a ve r t i c a l  t e m p e r a t u r e  gradient  p resen t ,  two types of weakly at tenuating thermoconvect ive  waves  
can propagate :  the one type is  p r e s e n t  close to the monotonic ins tabi l i ty  threshold and the second type is  
p r e s e n t  c lose to the o sc i l l a to ry  ins tabi l i ty  threshold;  in the third poss ibi l i ty ,  s imul taneous  propagat ion  of 
both types  of waves  i s  poss ib le .  

F igures  4, 5, and 6 show the calcula ted c h a r a c t e r i s t i c s  of thermoconvec t ive  waves  in a l aye r  of a 
v i scoe las t i c  liquid as  a function of Ra.  The Curves  1 to 4 co r r e spond  to r = 0.6, P r  = 10, and o~ = 0.1; 1; 
7.6; and 10. As Ra i n c r e a s e s ,  the osci l la t ing ins tabi l i ty  for  these values  of the p a r a m e t e r s  appea r s  fo r  
Ra  = Rkt before the appearance  of the monotonic ins tabi l i ty  (Ra = Rm).  The f requency  of the neut ra l  o sc i l -  
lat ions is  w = 7.6. F r o m  Fig. 4 we see that waves  having f requenc ies  close to the f requency  of the neut ra l  
osc i l la t ions  (Curves 3, 4) have smal l  at tenuation d e c r e m e n t s ;  waves  with smal l  f r equency  a re  s t rongly  
damped (Curves 1, 2). The lengths of the weakly at tenuating waves  a re  found to be close to the height of 
the l aye r  (Fig. 5). The group ve loc i t i es  show a lmos t  no change with a change in Ra  (Fig. 6). 

Curves  5-9 co r respond  to ~" = 0.5, P r  = 10, w = 1; 0.1; 0.001; 15; 8.3. In this case ,  as  Ra  i n c r e a s e s ,  
a monotonic ins tabi l i ty  f i r s t  a p p e a r s  fo r  Ra = I~M; however ,  the threshold  of the osci l la t ing ins tabi l i ty  is  
found in the immedia te  vic ini ty  beyond the threshold  of the monotonic ins tabi l i ty  (Ra = R02). F r o m  Fig. 4 
we see that  under such conditions a weak at tenuation of the waves with f requenc ies  close to 0 is  poss ib le  
(Curve 7), jus t  as  in the case  of an o rd ina ry  liquid, and a lso  with f requenc ies  close to the f requency  of the 
neu t ra l  osc i l la t ions ,  w = 8.3 (Curves 8, 9). The lengths and group ve loc i t ies  of the low f requency  weakly 
at tenuating waves  behave jus t  as  in an o rd ina ry  liquid. The lengths of the weakly at tenuating waves  with 
f requenc ies  close to the neu t ra l  f r equency  turn out to be two t imes  s m a l l e r  than the lengths of the low f r e -  
quency waves  (Fig. 5). The group ve loc i t ies  r e m a i n  a l m o s t  constant  (Fig. 6). 

We p r e s e n t  numer i ca l  e s t i m a t e s .  If  we take a v i scoe las t i c  liquid with the p a r a m e t e r s  rg  = 1 sec,  
v = 10 -3 m2/sec ,  fl = 10 -3 deg -1 , h = 0.014 m, and A T  = 60 ~ then weak at tenuation i s  poss ib le  fo r  the f r e -  
quency w = 5 . 1 0  -3 and 5 Hz. 

I t  should be r e m a r k e d  that  at  p r e s e n t  no v i scoe las t i c  liquids a r e  known with p a r a m e t e r s  fo r  which 
the osci l la t ing ins tabi l i ty  a p p e a r s  before the monotonic instabi l i ty.  However,  the rap id  s t r ides  being made 
in the p o l y m e r  indus t ry  make i t  appea r  hopeful that such liquids will be synthes ized in the nea r  future.  It  
will then be poss ib le  to obse rve  the propagat ion  of weakly at tenuating thermoconvec t ive  waves  of high f r e -  
quencies ,  p red ic ted  e a r l i e r  in our  paper .  

w is  the f requency  of f luctuations;  
i s  the wavelength;  

h i s  the th ickness  of liquid l ayer ;  
g i s  the g rav i ty  force ;  
3' i s  the ve r t i c a l  t e m p e r a t u r e  gradient ;  
p i s  the fluid density;  
# is  the t he rma l  expansion coefficient;  
u i s  the k inemat ic  v i scos i ty ;  

NOTA TION 
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a 

T 
Ra 
ARa = Ra--Rcrit,  Rcri t  

is the dynamic viscosity; 
is the thermal diffusivity; 
is the temperature; 
is the Rayleigh number; 
are the critical Rayleigh numbers. 

i. 

2. 
3. 
4. 
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